The big picture on nanoscience

The Wellcome Foundation – one of the world’s largest biomedical research charities – has released a 16 page briefing document on nanoscience and nanotechnology intended for science teachers and post-16 students. It can be downloaded as a PDF from the associated web-pages – The Big Picture on Nanoscience – which are well-supplied with additional web-based resources and also have instructions for ordering the print version.

The document seems pretty exemplary to me – well and punchily written by some excellent science writers, well-illustrated and covering most of the points in a pretty balanced way. It’s particularly good on the debate about risks and potential downsides of nanotechnology.

The highlight for me is this nanointerview with two people from different sides of the debate – Doug Parr, Chief Scientist of Greenpeace, and Mark Welland, director of the Cambridge Nanoscience Centre. It’s a model of thoughtful debate with each protagonist looking cooly at both sides of the argument. Many people will welcome this statement from Doug Parr: “There isn’t big public opposition to nanotechnologies. Greenpeace isn’t opposed to them either: I hope some good things will come out of them. But we do have some scepticism about how they will be shaped.”

Public engagement in nanotechnology – the UK government publishes its outline programme

The UK government has taken another step forward towards implementing some of the recommendations of the Royal Society Report on nanotechnology. Its initial response was published in February to not entirely universal acclaim (see here for my analysis). Today it published its outline programme for public engagement on nanotechnologies, available as a PDF here. This mostly brings together a number of existing elements. The major new development is the establishment of the Nanotechnology Engagement Group – “The Nanotechnology Engagement Group (NEG) is being established to support public bodies in developing a wider programme of social and ethical research and public dialogue around nanotechnology. It will also draw more general lessons for the governance of other emerging science and technology areas.” The NEG will be run by a new NGO called Involve. I see that Richard Wilson, the director of Involve, is getting off to a good start in asserting his independence of Government; he writes on his blog “The Involve Group … already has real concerns as to whether the programme outlined is up to the challenges posed.” I’ll get a chance to judge for myself, as I’ve accepted the role of chair of the NEG.

Nanojury UK – finalising its conclusions

The Guardian today ran a piece about the Citizen’s Jury on Nanotechnology that I’ve been involved in, which has now had its final meeting. I’ve reported on the way the project has unfolded here (the launch), here (week 1), and here (week 3). The Guardian’s piece does a good job of conveying the diversity of points of view that are represented amongst the members of the jury. I’m looking forward to the publication of the jury’s conclusions and recommendations in September.

Nano cosmetics make the headlines

This week’s Sunday Times ran a story headlined “Safety fears over ‘nano’ anti-ageing cosmetics”. The story highlights the company L’Oreal, which, it says, is “marketing a range of skin treatments containing tiny nano- particles, despite concerns about their possible long-term effects on the human body “, and singles out the product Revitalift, which apparently contains “nanosomes” of pro-retinol A. The article quotes both the FDA and the Royal Society on potential unknown health effects, quoting the latter as saying “We don’t know whether these particles are taken down through the skin and what the long-term effects might be in the bloodstream.” There’s an important point that needs clarifying here.

We need to distinguish between manufactured nanoparticles, like the zinc oxide particles mentioned as being used in some sunscreens, and self-assembled nanostructures, like nanosomes, which are the major subject of the article. It’s the manufactured nanoparticles that have given rise to the health anxieties; nanosomes are quite different. Nanosomes are formed from soap like molecules which self-assemble into water into sheets. If you can persuade these sheets to curve round and make a closed surface you have a liposome; a bag in which you can trap useful molecules like the various vitamins and vitamin precursors that companies like L’Oreal like to put in their products (see here for L’Oreal’s own description of this technology). A nanosome is simply a small liposome. The idea is that these molecular delivery bags will both protect the active molecules and help them penetrate the skin. Should we worry that these nanoparticles will enter the human body and lead to long-term adverse effects? Probably not, because the molecules that make up the bag are identical to or very similar to naturally occuring lipids (in fact, the starting point for most liposomes is lecithin, a naturally occurring mixture of phospholipids that’s very commonly used as food emulsifier), and the structures they form are held together by rather weak forces. Liposomes have been much studied as possible drug delivery agents, and this research shows that most liposomes have a rather short life-time in the body. In fact, from the point of view of drug delivery, the lifetimes are rather too short and special tricks are needed – such as the so-called stealth lipsome technology – to prevent the body recognizing and destroying them.

I’m not sure where this piece has come from – it’s written, not by a science correspondent or an environment correspondent, but by the “Social Affairs” editor. I think “Social Affairs” is a rather pretentious categorisation for all those lifestyle pieces that Sunday newspapers are plagued by, and sure enough the “Style” supplement has a consumer review of non-surgical anti-ageing treatments. Perhaps someone in the lifestyle department saw the nano- word, dimly remembered that nanotechnology had been “derided by the Prince of Wales as ‘grey goo’ “, and saw the chance to get a serious story in the paper for a change.

Will the association of these cosmetics with scare stories about the dangers of nanotechnology be bad for their sales? Somehow I doubt it. Given the popularity of botox, it seems that a combination of outrageous expense and the suggestion of danger is exactly what sells an anti-ageing treatment.

Nanotechnology in the developing world – an emerging south-south gap?

Critics of nanotechnology like the ETC group worry about the potential for this new technology to lead to a divergence in wealth between rich countries and poor countries – the North-South gap. A different perspective emerges from an interesting recent commentary in the July 1 edition of Science Magazine by Mohamed Hassan of The Academy of Sciences for the Developing World (TWAS), Trieste – Small Things and Big Changes in the Developing World (subscription required). The article makes clear just how energetically and effectively some developing countries are pursuing nanotechnology. But, the article adds, “On the downside, there is a disturbing emergence of a South-South gap in capabilities between scientifically proficient countries (Brazil, China, India, and Mexico, for example) and scientifically lagging countries, many of which are located in sub-Saharan Africa and in the Islamic world”.

The big story, is of course, China. The same issue of Science has a very bullish article by Chunli Bai, Executive VP of the Chinese Academy of Sciences in Beijing – Ascent of Nanoscience in China (subscription required), which highlights both the investments going into nanoscience and the results in terms of scientific outputs, which have already placed China into the first rank of nanoscience nations (for example, on some measures their output has already surpassed the UK). But other countries, like India, Mexico, Brazil and South Africa, are making significant investments. Hassan’s article quotes the Nigerian Minister of Science and Technology for the rationale: “developing countries will not catch up with developed countries by investing in existing technologies alone. [In order] to compete successfully in global science today, a portion of the science and technology budget of every country must focus on cutting-edge science and technologies”.

The danger that Hassan sees is that the research goals of the developing nations that are successful in developing nanotechnology will become too closely aligned with those of the rich countries (i.e. creating lucrative goods for consumer markets) rather than focusing on the those issues that are particularly important for the developing world.

Nanotechnology – with nature or against it?

I’ve been covering two big debates about nanotechnology here. One the on hand, there’s the question of the relative merits of Drexler’s essentially mechanical vision of nanotechnology and the more biologically inspired soft and biomimetic approaches. On the other, we see the efforts of campaigning groups like ETC to paint nanotechnology as the next step after genetic modification in humanity’s efforts to degrade and control the natural world. Although these debates at first sight look very different, they both revolve around issues of control and our proper relationship with the natural world.

These issues are identified and situated in a deep historical context in a very perceptive article by Bernadette Bensaude-Vincent, of the Philosophy Department in the Université Paris X. The article, Two Cultures of Nanotechnology?, is in HYLE-the International Journal for Philosophy of Chemistry, Vol. 10, No.2 (2004).

The whole article is well worth reading, but this extract gets to the heart of the matter:

“There is nothing new in the current artificialization of nature. Already in antiquity, there were two different and occasionally conflicting views of technology. On the one hand, the arts or technai were considered as working against nature, as contrary to nature. This meaning of the term para-physin provided the ground for repeated condemnations of mechanics and alchemy. On the other hand, the arts – especially agriculture, cooking, and medicine – were considered as assisting or even improving on nature by employing the dynameis or powers of nature. In the former perspective, the artisan, like Plato’s demiurgos, builds up a world by imposing his own rules and rationality on a passive matter. Technology is a matter of control. In the latter perspective the artisan is more like the ship-pilot at sea. He conducts or guides forces and processes supplied by nature, thus revealing the powers inherent in matter. Undoubtedly the mechanicist [i.e. Drexlerian] model of nanotechnology belongs to the demiurgic tradition. It is a technology fascinated by the control and the overtaking of nature.”

Bensaude-Vincent argues soft and biomimetic approaches to nanotechnology fall more naturally into that second culture, conducting or guiding forces and processes supplied by nature, thus revealing the powers inherent in matter.

Nanojury UK – week 3

The citizens jury about nanotechnology that I’m involved in (see here for my last report) has now finished its third week. In week 2 the jurors heard a pair of witnesses from the sceptical side of the debate; Jim Thomas from ETC, and Charles Medawar from Social Audit, a group devoted to questioning the relationship between medicine and the pharmaceutical industry. In week 3, the jury heard from Tony Ryan, a chemistry professor (and colleague) from the University of Sheffield, and David Bott, an industrial chemist who’s had senior positions in BP, Courtaulds and ICI and who now divides his time between advising the DTI, a venture capital company and a couple of nanotechnology start-ups.

I went along to last night’s session to see how things were going. The jury now very much has the bit between its teeth; they’ve found some interesting lines of argument to pursue and are assiduously comparing the different positions of the witnesses they’ve heard, particularly on issues like the motives and trustworthyness of industry. A surprise (to me) visitor last night was Tom Fielden, the environment correspondent of the flagship BBC radio news program “Today”. He was recording some of the proceedings to use in a piece about the Nanojury that they’ll run on the morning the findings are announced. It’s excellent to see that this process is getting some serious interest from the mainstream media.

There’s one more witness to go now, then the jurors have three more evening sessions to discuss their findings and prepare their report. I think it’s going to make interesting (and at the moment, quite unpredictable) reading.

Science and Public Affairs

The summer edition of Science and Public Affairs, a magazine published by the British Association for the Advancement of Science, has some interesting articles about the debate around the social implications of nanotechnology (when I looked the website hadn’t been updated to the latest edition, so I don’t know which of these articles will be available online).

There’s a group of three short pieces of reaction to the UK Government’s response to the Royal Society Report “Nanoscience and nanotechnologies: opportunities and uncertainties”, one from me, one from the ETC group’s Jim Thomas, and one from the Royal Society’s study’s chair, Ann Dowling. The first two of these will already be familiar to readers of Howard Lovy’s Nanobot (if I was a proper blogger I’d probably insert something here about the mainstream media struggling to keep up).

More timely is an article by Nick Pidgeon and Tee Rogers-Hayden comparing the way public engagement was handled in the debate about genetic modification with what’s been done with nanotechnology so far. Pidgeon and Rogers-Hayden are social scientists based at the University of East Anglia; Pidgeon was the social scientist member of the Royal Society panel and both were involved in evaluating the success or otherwise of GM Nation?, the large scale public engagement programme run by the UK government on the subject of agricultural biotechnology. They found a lot to criticise about GM Nation; the debate was held too late, with commercialisation imminent and public attitudes already polarised, and the participants weren’t representative of the population as a whole.

In the nanotechnology debate, some of these problems can be avoided – the process has been begun much earlier in the development cycle, and it is clear that public opinion is not yet polarised to anything like the degree seen with GM. But the upstream engagement we are beginning to see with nanotechnology will bring its own difficulties, precisely because some of the applications and implications of the technology are not yet clear, and because broader issues of a much more political nature (who controls technology? who benefits? who do we trust?) become more prominent.

But the article highlights an absolutely central issue with upstream engagement processes, that I’m currently spending a lot of time thinking about in the context of Nanojury UK (I should note that Pidgeon is on the steering committee of this project, and Rogers-Hayden has been observing a number of the sessions). This is the crucial role of information about the science. How can one ensure that the participants of the process have good quality information, while ensuring that the way the information is presented doesn’t introduce bias? The credibility of the process depends on all sides of the debate feeling that their views have been fairly represented, but there’s a danger that this will lead to potential conflicts between holders of fundamentally different views about the status of scientific expertise.

Why, one might ask, do we not simply issue the participants in these processes with a pack containing all the serious and well-considered documents that have been produced on nanotechnology, such as the Royal Society report? Quite apart from the important point that most of the population hasn’t learnt to love turgid chunks of text in the way that academics do, there’s a danger here of too much information. I was interested to read David Berube’s sceptical comments on a consensus conference held at Madison, Wisconsin earlier this year. My feeling on reading these conclusions is that the participants, presented with such eminently reasonable documents as the Royal Society report, simply agreed with them, as well they might do. I’d hope, though, that the real value of this kind of public deliberative process would come from the new and unexpected insights that people who haven’t been previously been deeply immersed in the debate might come up with.

Nanojury UK – the first week

A citizens jury on nanotechnology, sponsored by the IRC in Nanotechnology at the University of Cambridge, Greenpeace, and The Guardian newspaper, has got under way in earnest this week. I wrote here about its launch.

The jury is taking place in Halifax, a large industrial town in West Yorkshire. Names chosen at random from the electoral rolls were invited to apply to take part, and about 20 names from those who so applied were selected in a way that gives a group whose diversity is representative of their community. The jurors sign up for 20 two and a half hour evening sessions – two a week for ten weeks – so it’s a big commitment. The first 10 sessions are on a topic that the jurors themselves choose, and the remaining 10 sessions are about nanotechnology. Having spent five weeks talking about youth crime, they are working well together as a group and they understand the process pretty well.

Wednesday evening was spent in a general discussion about technologies and their impacts, both positive and negative, together with a very brief, scene-setting introduction to nanotechnology. The first proper witness session was held last night, on the theme of nanotechnology in medicine. The witness was Beatrice Leigh. Bea was formerly Head of New Technology for the drug company GlaxoSmithKline; she now runs her own (somewhat smaller) drug discovery company. I thought Bea did a great job, giving a very clear picture of why nano will be important in the pharmaceutical and biomedical industries (and, on the way, not being shy about the current shortcomings and difficulties of big pharma). After her half-hour long statement, the jurors spent some time by themselves formulating what they felt were the key questions, and then Bea and I did our best to answer them. This part of the evening provided clear proof that you don’t need expert knowledge to be able to ask penetrating questions.

Next week the jurors will get to see a rather different take on nanotech – next witness is Jim Thomas of the ETC group.

Intelligent yoghurt by 2025

Yesterday’s edition of the Observer contained the bizarre claim that we’ll soon be able to enhance the intelligence of bacteria by using molecular electronics. This came in an interview with Ian Pearson, who is always described as the resident futurologist of the British telecoms company BT. The claim is so odd that I wondered whether it was a misunderstanding on the part of the journalist, but it seems clear enough in this direct quote from Pearson:

“Whether we should be allowed to modify bacteria to assemble electronic circuitry and make themselves smart is already being researched.

‘We can already use DNA, for example, to make electronic circuits so it’s possible to think of a smart yoghurt some time after 2020 or 2025, where the yoghurt has got a whole stack of electronics in every single bacterium. You could have a conversation with your strawberry yogurt before you eat it.’ “

This is the kind of thing that puts satirists out of business.