A cross-section of science at the Royal Society

I’ve been attending the New Fellows seminar at the Royal Society, the UK’s national academy of science. This is the occasion for the 44 new fellows that are elected each year (one of whom, this year, was me) to give a brief talk about their research. The resulting seminar is a fascinating snapshot of the whole breadth of current science and technology, of a kind that one rarely sees in today’s world of science specialization. Here are some impressions of the first day.

Biology is strongly represented, with a cluster of talks on various aspects of cell signaling, ranging from the details by which signaling molecules are switched on and off, to the ways stem cells are regulated. A revealing talk showed how electron microscopy could unravel the mechanism by which the remarkable machines that ensure proteins fold correctly – chaperonins – work. From environmental and earth science we had talks on the effects on our environment both of the forces of nature – in the shape of the relationship between long term climate change and variations in the sun’s activity – and of the effects of man, through the impact of our industrial society on atmospheric chemistry. In physics, there was a spread from the most pure aspects of the subject (how to measure the spin of a black hole) to the applied and commercially important (the molecular beam epitaxy technique that underlies much of current semiconductor nanotechnology). One thing that comes out very strongly from the talks are the unexpected unifying threads that run through what appear on the face of it to be very different pieces of science. Ideas from statistical mechanics, like entropy, are obviously important for understanding self-assembly in soft matter, but they also cropped up in talks about signal processing in the brain and in modelling the growth of cities.

The important relationship between science and society was highlighted in two contrasting talks about the application of science to solve problems in the developing world. In one, the talk was at an abstract level, highlighting the problems of governance and economics in Africa that made it difficult to apply existing science to solve pressing problems. These abstract ideas were made very concrete in a fascinating talk about the development of new combination therapies to overcome the problems caused by drug-resistance in malaria. The foundation of these therapies is a new anti-malarial, artemesinin, recently discovered by Chinese scientists on the basis of a remedy from traditional chinese herbal medicine. Now that effective remedies are available, the problems to overcome are the social, economic and political barriers that prevent them from being universally available.