A grand day out

I’ve been to London today, for two meetings, both about nanotechnology but with rather contrasting flavours. The morning saw me at a large TV production company, which is planning a three part series on nanotechnology for a national broadcaster. In the afternoon I was at the Department of Trade and Industry, with a couple of social science colleagues, including Stephen Wood, my coauthor on the ESRC report The Social and Economic Challenges of Nanotechnology. We were meeting the civil servant in charge of the DTI nanotechnology agenda, together with Hugh Clare, who is the director of the Micro/Nanotechnology network that the DTI is trying to establish with its ¬£90 million, to discuss how they would like to see the social science research agenda shaped.

This was an interesting glimpse into government thinking. While the Treasury lives by a rigorous creed of free markets and non-intervention, the DTI is doing its best to formulate and implement what’s very reminiscent of an old-fashioned industrial policy, using government-sponsored innovation to rescue the small remnants of the UK’s manufacturing industry, for which these mandarins showed rather a touching nostalgia. What worries me is the central problem of how you define nanotechnology. The DTI is very keen on network building, but these networks are self-selecting and not necessarily truly representative. If you put together a network, how do you know that these are the companies and organisations that are genuinely developing and using nanotechnology to make new products and businesses, rather than those that find nanotechnology a useful label for marketing or fund-raising purposes? Here’s where the kind of network analysis that social scientists are building could be really helpful.

How about the public perception issue? This is something that clearly deeply bothers the DTI, and there was palpable relief at the Royal Society report; clearly they were very comfortable with the modest extensions of regulation proposed in the report, and they seemed pretty confident that the government would simply accept the report and implement it in full. They’re seriously worrying about over-regulation driving not just manufacturing but research overseas, and they cite the example of the relocation of animal experimentation to Hungary. But again, I don’t sense much confidence about what to do with the public perception issue. Clearly no-one in government believes in the so-called “deficit model” of public engagement anymore. (This is the idea if that you simply explained everything clearly enough the scales would fall from the public’s eyes and they would eagerly embrace whatever new technology you were offering). Old fashioned views about risk analysis won’t wash either – you can produce as many risk tables as you like to demonstrate that crossing the road is quantitatively more dangerous than using a nuclear powered toaster to make your genetically modified toast, but if this conflicts with people’s deep intuitions they’ll trust the intuition.

I think it all boils down to visions, and this where I connect with my morning meeting. A company making a TV program for prime-time isn’t going to devote three slots to potential improvements in supply chain management, better impact toughness for engineering thermoplastics, and new avenues in textile treatment. It’s the big visions that are going to make popular TV, and at the moment its the environmentalists, on one hand, and the Drexlerites, on the other, that have those visions, deeply uncomfortable as those visions are to the sober people in government departments and the nanobusiness world. But people need those big narratives to make sense of and get comfortable with technological change, and if people don’t like the narratives that are on offer they’d better develop a compelling one of their own.

Drexler and the nanosubmarines

I wrote below about Drexler’s unhappiness that I had illustrated my article in Physics World with a particularly
silly image of a nanosubmarine. He wrote that could not be held responsible for the “ridiculous artists concepts” that have become associated with his work, and thus my criticism of the nanosubmarine illustration wasn’t a fair criticism of MNT. I’m quite sure that if Drexler had been directly involved in the production of images like these, then they would be much more physically plausible. But I wonder if the supporters of Drexler have been as quick to seek correction when these images are used in connection with articles that are positive about MNT? The particular image I chose is very widely circulated, as it appears on the Microsoft Encarta online encyclopedia with the caption “Nanobot computers of the future” . Many readers – particularly high school students – will regard this source as authoritative, and it is perhaps a pity that this image remains unchallenged there.

The neutral onlooker might also find it puzzling that exactly the same image appears on the website of the Foresight Institute, of which Drexler is Founder and Chairman Emeritus. Of course, Drexler can’t be held responsible for everything on this large website, particularly given that he has no executive role. But the casual browser must surely be forgiven for thinking that images on the Foresight website carried some kind of endorsement from the Foresight Institute, and thus by extension from its Board chairman.

But the issue of the use of imaginative images is far from black and white. I gave a talk at a conference in May in which I made similar criticisms of this kind of image, and I was surprised to be taken to task about it by a prominent member of the UK nanobusiness community. His argument was that I should consider the image as a metaphor, and if the public found it easier to understand the image of a nanobot vacuum cleaner sucking up cholesterol deposits than a more realistic picture of, say, an anti-cholesterol drug wrapped up in an advanced nanoscale drug-delivery device like a liposome, then the imaginative image served a valuable purpose. Perhaps I’m too literal minded to buy this argument. The message must surely be that visual metaphors are very powerful, but if not used carefully they can rebound in unexpected and unwelcome ways.

An international dialogue on the responsible development of nanotechnology

Science administrators from 25 governments and the EU met a couple of months ago to discuss how the responsible development of nanotechnology should be managed globally. The report of the meeting is now publically available.

One of the most impressive things about the meeting is the attendance list; from the USA Mihail Roco from the National Nanotechnology Initiative, Undersecretary of State for Science and Technology Phil Bond, and the Presidential Science Advisor John Marburger III, and correspondingly significant representation from almost every other country with a significant research and development effort in nanotechnology. This essentially amounts to the developed countries of Europe and the Pacific Rim, and in the developing world South Africa, India and the big economies of Latin America. The glaring absentee was China, presumably because Taiwan was strongly represented.

The themes discussed were the now-familiar ones of health and safety, possible environmental impacts, ethical implications particular at the interface with medicine and the life sciences, and special factors that might impact on developing countries.

As to the primary question of what nanotechnology actually is, I read with approval this paragraph…
“Numerous participants stressed that it was important not to think of nanotechnology as a single technology, but rather of a number of both discreet and interrelated technologies, each of which will have their own risk/benefit profile. It was suggested that it would be helpful to develop some sort of a framework within which important distinctions can be made such that the discussion of responsible R&D of nanotechnology does not become overly broad, and result in sweeping but not very meaningful statements and actions.”

MNT devotees will be disappointed to see their visions dismissed by John Marburger thus:
“Science fiction, some of it quite entertaining as literature, appears to be a major factor in the public perception of nanotechnology. Unfortunately, the entire field acquired a cult-like following in the 1990’s that includes many engineers and scientists who have personal visions about the revolutionary possibilities of nanotechnology. These visions are good for motivating work, but are not scientifically validated. This is a relatively common phenomenon in science, whose function is to match grand dreams against the harsh reality of Nature. We need dreams, visions — and perhaps even fears — in the first place to drive the arduous business of scientific investigation, but we may not assume their validity, nor should we act carelessly upon them as we plan to invest society’s scarce resources.”

Wiggly widgets in Small Times

A piece by Candace Stuart in Small Times gives a review of my book “Soft Machines”. I suppose that the publicist in search of a line for a book cover would choose the description of the book as “a rich and satisfying full-course meal” and the academic in me might approve of the line “This is not nano lite”, but I’m mostly pleased that the reviewer seems to have read the book and appreciated the main message.

Making me a better human

An interesting article on the Better Humans website, Unraveling the Big Debate over Small Machines, quotes me, and adds that my position on nanotechnology isn’t very different to Drexler’s. This is at first sight rather puzzling since my recent article in Physics World, The Future of Nanotechnology, and indeed my book Soft Machines, have been read by many people, including Drexler himself, as attacks on the Drexlerian position. Indeed, I would say myself that my views are actually pretty similar to those of MNT arch-sceptic George Whitesides, though I possibly express them a bit more politely, and with a little less self-confidence.

But on reflection, I find this rather a welcome perception. Perhaps it does mean that a space is growing on both sides of the debate for some rather more nuanced positions than we’ve seen in the past. The Better Humans article gives a lot of attention to the Drexler-Smalley debate. It seems to me that we need to move on from this. MNT sceptics need to recognise that Smalley did not deliver the knock-out punch that they were hoping for. This was brought home to me in Santa Barbara this week in a conversation with an old friend who teaches a sophomore class in nanotechnology at the University of Pennsylvania. She’d set her class the task of studying the debate and deciding which side they thought had prevailed; an overwhelming majority favoured Drexler. So a reasonable sample of educated and intelligent young people was not convinced by Smalley. On the other hand, I think that MNT devotees are wrong to think that this means there are now no rational grounds for scepticism about MNT. While the possibility of some kind of radical nanotechnology is proved by the existence of biological nanomachines, the question of what the best approach to making synthetic nanomachines is is by no means decided. My book Soft Machines argues that MNT has many more disadvantages and potential difficulties than some of its supporters admit, and it will be interesting to see whether its arguments prove more convincing than Smalley’s.

Bad news for lab rats

Thanks to Howard Lovy for using a quote from me in his Wall Street Journal article. The article was about reactions to the Royal Society report on nanotechnology, Nanoscience and nanotechnologies: opportunities and uncertainties, and my quote said something like: “Good news for the environment, good news for nanotechnology, bad news for lab rats”. Underneath this flippant sounding response there is, I think, a serious point aboout the way the report marked the emergence of a strange alliance between nanoscientists and environmentalists. The effect of this unlikely alliance has been to focus the nanotechnology debate almost exclusively on a single topic, the possible toxicity of nanoparticles, and certainly the headline reactions to the report have been to focus on its recommendations for tightened regulation of the use of nanoparticles and for more research on their toxicity. I’m not saying that it isn’t a good idea to do both of these things; it is, and the measures the report calls for are entirely sensible. But you don’t have to be a fervent devotee of Drexlerian MNT to wish that the report, and more importantly the press reaction to it, had focused a bit more on the longer term, both in terms of potential benefits, and in terms of the more far-reaching social implications raised by issues such as universal surveillance and human enhancement.

What has led to this alliance of convenience? The idea of nanoparticles posing an environmental toxicity risk is of course one that fits very well in the environmental movement’s long running narrative about the chemical industry, so that’s an issue they are very comfortable about highlighting. The reason for reaction of the nanoscientists is more interesting. The issue is very contained, very tractable, and rather easy to suggest remedies for – a bit more regulation and a few more rats sacrificed in toxicology studies. And from an academic point of view, the subject is a little bit boring. The glamorous areas of nanoscience – the ones that get papers in Nature and Science – are in areas like molecular electronics, biological molecular motors, new applications of nanomagnetism, and suchlike. Making nanoparticles is now really a chemical engineering issue, so mainstream nanoscientists may not be that bothered if a few more obstacles are thrown in its commercialisation path.

A nearly nano-free week in California

I’ve been in Santa Barbara, CA, this week, finding out that traveling with two small children doesn’t leave much time for writing about nanotechnology or anything else. The occasion for the visit is the 65th birthday of Ed Kramer, a distinguished materials scientist at University of California Santa Barbara; it’s a part social, part scientific event bringing together his past and present graduate students, postdocs, and collaborators to celebrate his career so far and to thank him for his huge influence on our scientific careers (I was a postdoc with him between 1987 and 1989 at Cornell; these were two tremendously productive, educational and enjoyable years).

The scientific part of the proceedings consisted of a meeting with talks by his former students and collaborators. There were many nano-science luminaries around and much great stuff talked about; among those talking were Ned Thomas, director of the Institute of Soldier Nanotechnology at MIT, talking about photonic crystals, Herbert Hui with a beautifully lucid description of exactly why gecko feet are so sticky, Chris Ober from Cornell talking about new resist materials for making sub-30nm features, as well as rapid 3-d prototyping at the micron-scale using two-photon photo-polymerisation, and lots of other good stuff too.

Strangely, though, there was little mention of the nano word. Even the most distinguished of our number, faced with giving a talk in front of Ed, felt a bit like a graduate student again, in awe of the great man. Everyone has worked with him is in agreement that he’s someone who expects a lot from their students, who is quick to appreciate good work, and outstanding at standing back and making sure his collaborators get all the credit they deserve and more. But he’s got a low tolerance threshold for hype and fashion and we all knew that the way to get his approval is by telling a solid science story without any sweeping claims for grander significance.

I think we were all overcompensating. I asked Ned Thomas how he felt about now being very publicly labeled as a nanotechnologist, rather than as a polymer physicist. He thought there was a real difference; the science he did was rather similar, learning how to create nanostructures in polymers by self-assembly, but the focus had changed. It wasn’t so much that all his work now was focused on an immediate application, but the possibility of an eventual application provided a much more powerful steer on the direction of his work than was the case in the past. I think this rings true as a description of one of the changes in the sociology of science that nanotechnology as a concept has brought about.

The Lion lies down with the Lamb

The recent report from P. Guo at Purdue that RNA can be used as the building block for nanostructures(original article in Nano Letters, subscription probably required; news report) has generated rare unanimity between the Drexlerian and the nanobusiness wings of the nanotechnology movement. Remarkably, the achievement has united the Tom and Jerry of the nanotechnology blog world, TNTlog, and the Center for Responsible Nanotechnology. Is this excitement warranted?

Very much so, in my view. The advantage of DNA as a nanotechnological building block (as demonstrated in Seeman’s work) is that the self-assembly process between base-pairs that creates the duplex, double helix structure, is very straightforward to understand and model. This means that the design process, in which one deduces what sequence of bases is required to produce a given 3d structure, is highly tractable. Proteins exhibit a much richer range of useful three dimensional structures, but rational design involves a solution of the protein folding problem, which still remains elusive. RNA offers a middle way; RNA self-assembly is still governed by straightward base pairing interactions involving four bases in two complementary pairs. But RNA, unlike DNA, can fold and form loops and hairpins, giving a much richer range of possible 3d structures. Thus, using RNA, we could get the best of both worlds – the richness of potential self-assembled structures of proteins, with the computational tractability of DNA.

We should remember that neither DNA nanotechnology nor RNA nanotechnology is likely to yield mass-market products any time soon – nucleic acids are delicate molecules that remain enormously expensive. But these lines of research are just the sort of avenue that publically funded nanoscience should be supporting – visionary stuff that can excite both the Drexlerian radicals and the pragmatic nano-businessmen.

Attack of the nanopants

Howard Lovy reports a televised encounter between some nanopants and a sticky fluid, in which the nanopants came off the worse.

Nanopants (or nanotrousers to any local readers) are garments whose fabric has been treated with the textile treatments of the Nano-tex corporation to improve their resistance to staining. Nanopants have become a bit of a touchstone to where people stand in the controversial matter of deciding what nanotechnology actually is. To followers of the Drexlerian view of nanotechnology (MNT) they are a symbol of how the word nanotechnology has been debased to cover all kinds of mundane, incremental applications of technology, far removed from the original grand vision. The pro-MNT blogger Glenn Harlan Reynolds simply calls them fake. But Nano-tex, to the nanobusiness community, is a splendid example of how nanotechnology can transform even traditional industries. Where does the truth lie?

I looked up the Nano-tex patents, in an attempt to establish whether the nano in these pants is real or simply marketing hype. There are 18 of them, and it isn’t obvious which technology is used in which product, but the general idea is clear enough. A typical product will be a copolymer – two or more chemically different polymer chains that are chemically attached to each other. One type of polymer will be hydrophilic, and this will tend to stick to a cotton or wool fibre, and the other part is hydrophobic. These hydrophobic bits of the chain will arrange themselves away from the textile surface, presenting a water and stain resistant surface to the outside world.

Two questions – is this novel, and is it nanotechnology? From the point of view of a scientist (rather than a patent lawyer) it clearly isn’t that new. It’s the same basic idea as 3M’s Scotchgard‚Ñ¢, invented in 1956 – this technology is also based on a copolymer, in this case an acrylic backbone on which water-repellant fluorocarbon side-chains are grafted. This works in just the same way as Nano-tex’s molecules – the acrylic backbone sticks to the fibre surface, leaving the water-repellant side-chains to coat the surface with a non-stick layer. But nonetheless, I do think it is nanotechnology, albeit of rather a rudimentary kind. A molecule has been defined with a specific architecture which codes the information it needs to form a specific nanoscale structure (in this case, sticky hydrophilic bits next to the textile surface, non-stick hydrophobic bits on the outside). It exploits the principle of self-assembly, which, as I explain in chapter 5 of my book Soft Machines, is the principle by which the sophisticated nano-machines of cell biology are constructed, and which we will learn to use in ever more sophisticated ways to make synthetic nano-devices.

But if nanopants really are nanotechnology, does that not imply that 3M have been doing nanotechnology since at least 1956, without using the label? Well, in this sense, yes. So the final lesson should probably be that the use of nano as a label for incremental products like this does owe a lot to marketing, but that doesn’t mean they don’t involve sophisticated technology. It’s just that other products without the nano label may in fact be just as nano-enabled.

Drexler responds

This morning brought a somewhat tetchy email from K. Eric Drexler, not entirely happy about my article in Physics World, The future of nanotechnology. There were three main complaints:

1. That he, Drexler, could not be held responsible for the “ridiculous artist’s concepts” that have become associated with his work. Thus my criticism of the nanosubmarine illustration isn’t a fair criticism of MNT. Actually, I have some sympathy with his predicament on this, in that I’m sure that the elementary errors that show up in the particularly silly image I chose wouldn’t be there if Drexler had had anything to do with it. Nonetheless, my criticism of these images does make one important point very clear – you shouldn’t expect macroscopic engineering design concepts to apply to directly to the nanoworld. Is this a fair criticism of MNT? I think it is – to quote from the preface of Nanosystems; “Molecular manufacturing applies the principles of mechanical engineering to chemistry”.

2. Next he argues that my statement that “Strong surface forces may make the moving parts of a NEMS device stick together and seize up” reflects a lack of study of the appropriate section of Nanosystems, chapter 10, which argues that very low friction is to be expected between atomically smooth diamond surfaces. It’s worth noting first of all that this statement in my article isn’t actually directed at MNT at all, but at top-down NEMS. Nonetheless, I do believe that the discussion in Nanosystems does substantially underestimate the problems of friction and dissipation at the nanoscale. This is a rather technical discussion, which I will enlarge on at a later time.

3. Finally, he objects that I have not proved my central contention, that biology is highly optimised for the nanoscale, pointing out that biology hasn’t been able to explore the space of non-aqueous molecular machine systems. This gets to the heart of the argument of Soft Machines. A crucial, though obvious, point, is that it only makes sense to talk about optimisation in the context of a particular environment, and what is optimised for ambient operation at 300 K in the presence of water is not the same as what is optimised for ultra-high vacuum at a temperature of 3 K. I wouldn’t exclude the possibility that MNT would work at 3 K in UHV, but I think that what works in ambient conditions is much more interesting, if only because medicine is likely to be such an important application of nanotechnology.